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ABSTRACT

A process-oriented simulation approach to project
management is proposed which gives realistic statistical
information about total project data and about
individual activities as a function of contractual
completion-time. The proposed method provides the
possibility to define a generic activity network, which is
simulated. The activities in the network may have any
statistical or tabulated completion-time distribution. A
project simulation run consists of a large humber of
sub-runs each simulating a project realisation. A run
provides statistical information with respect to project
completion-times, individual activities such as the
probability of activities being critical and excess
probability of contract time, and information for
monitoring contract critical activities during project
realisation. A case of aircraft maintenance is elaborated
in which the model is used to reduce the number of
contract time excesses using a simple rule assigning
extra capacity to activities. The rule is based on
preliminary analyses and information that is obtained
during the project progress.

INTRODUCTION

For many years it has been common practice to support
project management by planning techniques such as
CPM and Pert (Winston,1991) . During recent decades
there has been an increase in the use of simulation to
support management decisions, including those in the

field of project management (Veeke 1982), (Lightfoot
2000), (Deschaine 2000). One of the main advantages
of using simulation is that in addition to providing
realistic statistics of the whole project, all the data of
every single project-realisation is available and can be
used for further analysis. In practice simulation results
may be used to determine the contractual completion
date of the project during a quotation-process. For each
manager it is clear that this ‘contractual’ duration will
not be the shortest time possible, because then the
chance of exceeding it would be 100%. In consequence
management will decide to offer a project-duration with
a specified confidence level of for example 90%. To
that end, a realistic project completion-time distribution
is needed. After the decision on this project-duration
there is a 90% chance of project-duration without any
critical path, simply because the finishing time will be
shorter than the contractual project-duration.
Management of the project will concentrate on those
activities that may still cause a late finish. These
“contract critical” activities are not necessarily
restricted to the critical path activities of the CPM
analysis, but may be activities that were not initially
critical at all or only slighty critical. The simulation
detects these potentially critical activities providing the
means to monitor the right activities during real project-
execution.

Next process oriented modelling will be explained
(Zeigler, 1985) and the kernel of the network model
will be shown in pseudo-code. The actual model is
coded in the process-oriented simulation tool TOMAS
(Veeke and Ottjes, 2000a and b). The model will be
further elaborated and applied to a case of aircraft
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maintenance. The results of the modelling will be
discussed from a project manager’s point of view.

PROCESS-ORIENTED MODEL

The process-oriented approach used in this work can be
summarised in two steps: (Healy, 1997), (Veeke and
Ottjes, 1999).

Step 1: decompose the system into relevant classes of
elements, preferably patterned on the real-world
elements of the system. A class is characterised by its
attributes. An instance of a class will be called an
element. The state of each element is defined by the
value of its attributes.

Step 2: distinguish the “living” element classes and
provide their process description.

A process governs the dynamic behaviour of each
element. The system time during a simulation is called
now. In the process description of an element class we
use hold t to indicate that an element needs t time units
to carry out some task. If such a hold statement is
encountered in the process description, the process halts
until time t has elapsed and then continues its process.
In other words the process is waiting for a specific time
event. Analogous to this, it is possible for a process to
wait for a state event e.g. for a specific condition to be
fulfilled. In pseudo-code this is written as: standby
while/until condition. Another time consuming
statement in a process description is suspend meaning
that an element becomes passive when this statement is
encountered. A passive element can only be restarted by
the resume command given from the process of another
element. Because several elements may be active at the
same time a sequencing mechanism is needed to
synchronise the activities and to manage the event
calendar. This mechanism must be supported by the
simulation package that is used.

Additional features are queues or sets, which may
contain elements and, in the case of stochastic
behaviour, distributions, modelling for example
execution duration. Queues and sets and distributions
may be used as attributes of element classes. The kernel
of the network model and its dynamics will now be
described in terms of a process-oriented model in
pseudo-code and in Tomas-code.

THE NETWORK MODEL

We distinguish two element classes: the activity class
and the monitor class.

The main element class is the activity class. We use the
“activity on node” description. The activity class owns
several attributes such as a preActivitySet and

postActivitySet as shown in Figure 1. These sets
contain the preceding and succeeding activities
respectively. In this way any directed activity network
can be defined.

- PreActivitySet

- PostActivitySet

—  ControlActivitySet

—  ExecTimeDistribution

- execTime {=sample execTimeDistribution}
- earliestStart

— latestFinish

- PROCESS

Figure 1. attributes of class activity in
pseudo-code.

- putall activities of preActivitySet into
controlActivitySet

- standby until controlActivitySet is empty

—  earliestStart= NOW

-  execTime=sample of execTimeDistribution

- hold execTime

—  leave controlActivitySet of the all activities in
postActivitySet

—  leave scheduledActivityset

- suspend

{next reverse simulation: break down the project}

—  putall activities of postActivitySet into
control ActivitySet

- standby until controlActivitySet is empty

— latestFinish = completionTime-NOW

- hold execTime

- leave ControlActivitySet of all activities in
preActivitySet

—  leave scheduledActivityset

Figure 2. Process description of class
activity in pseudo-code.

procedure Class_activity.Process;
begin
while simulation_on do
begin
suspend;
prepare(preActivitySet);
while controlActivitySet.GetLength>0 do
begin
standby;
end;
earliestStart:=  tNow-subRunStartTime;
execTime:=drawExecTime(distrType);
hold(exectime);
leaveActivitySets(postActivitySet);
leaveQueue(scheduledActivitySet);
suspend;
{next reverse simulation: break down the project}

end;{while simulation_on}
finish;
end;

Figure 3. Part of the process of the class
activity in Tomas and Delphi-code. Typical
Delphi key words are bold. Tomas key

words are italic.
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The control ActivitySet is used for run control purposes.
In addition to this an activity owns its execution time
distribution, which can be of any type for each instance,
and typical data such as earliest start time and latest
completion-time, which have to be determined during
simulation. An activity owns a PROCESS that takes
care of its own timely execution. In other words: the
activity waits until it is allowed to be executed. It then
executes itself using a sample from its execution time
distribution as activity-duration. After execution it
leaves the scheduledActivitySet. If all the activities of
the project are finished (scheduledActivitySet= empty),
the make span and all early start times are known. Then
the simulation is performed in reverse. In other words
the project is broken down. This provides the latest
finish data for all activities. The activity slack (also
called total float) is defined as:
slack=latest finish — executionTime - earliest start.

1
prepare for

|_inspection I
111

An activity with slack=0 is called critical.

The process of the activity class is described in Figure
2. Figure 3 shows part of the code of the model
implementation in Tomas.

For number of sub-runs Do:
- Putall activities into the scheduledActivitySet
—  Start processes of all activities
—  Standby until scheduledActivitySet is empty
- CompletionTime=NOW
{prepare and start the reverse simulation }
—  Putall activities back into the scheduledActivitySet
- Resume processes of all activities
—  Standby until scheduledActivitySet is empty
Figure 4. Process description of the class monitor

in pseudo-code.

act.nr
activity name

Ib ] av ] ub

Figure 5. Case: Aircraft maintenance activity network with activitie NRs, name and activity-duration data: Ib: lower

bound, av: average and ub: upper bound.
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Figure 6: General execution time distribution for an
activity. Three numbers are given: Ib: lower bound, av:
the average and ub: the upper bound. In order to obtain
the average “av” it is demanded that

f1*(av-1b)=f2*(ub-av)

The monitor class governs the simulation runs. Its
process is described in Figure 4. The monitor is
responsible for the preparation, start and analysing of a
simulation run. One simulation run consists of a number
of simulation sub-runs. Every sub-run simulates one
realisation of the project giving a completion-time and
all data of the individual activities. The data of each
sub-run is stored for further analysis.

Table 1. Critical path analysis with fixed average

activity execution times (av) given in Figure 5.

Activity-NR | Slack Eeriest Latest
Start Finish

1 0 0 1

5 0 1 4

11 0 4 5

17 0 5 29

21 0 29 65

26 0 65 66

12 3 4 14

19 3 5 31

23 3 28 65

4 15 1 17

10 15 2 35

16 15 20 65

2 26 1 37

6 26 11 65

3 40 1 45

7 40 5 52

13 40 12 61

20 40 21 62

24 40 22 62

8 42 5 53

14 42 11 61

25 42 22 65

18 47 5 54

22 47 7 65

9 59 2 64

15 59 5 65

Project completion-time: 66 hours

One run consequently provides statistical data about
project completion-times and the probabilty of activities
that are critical. In this work a run consist of 1000-
5000 sub-runs. With the approach described multi-

project simulation can be obtained by creating a
monitor for each project and starting it at the proper
time. In such cases no reverse simulation is performed.
Further it is possible to allocate scarce resources (Ottjes
and Veeke 2000). This paper focuses on a single
project.

APPLYING THE MODEL: A CASE

The use of the model will be illustrated by a simplified
case concerning aircraft maintenance (Veeke, 1997).
Figure 5 shows the activity network. The activities are
named and also identified by a number. The durations
of the activities indicated apply to a “general”
distribution explained in Figure 6. Any other
distribution function may be applied including functions
defined by a table.

Table 2. critical path analysis. The project was
simulated 5000 times using activity execution times
drawn from the distribution according to the data in
Figure 5 and shaped as Figure 6. The last column
shows the percentage of sub-runs that the activity was
critical in the case of a project completion-time
exceeding the contract time. The contract time was set
at 84.15 hours being the 90% percentile of the project
completion-time distribution.
Activity- | Av.Slack | % % Contract
NR Critical Critical

1 0.0 100.000 100.000

26 0.0 100.000 100.000

5 0.5 90.760 100.000

11 5.4 54.300 32.934

17 5.4 54.300 32.934

21 5.4 54.300 32.934

12 8.6 36.460 67.066

19 8.6 36.460 67.066

23 8.6 36.460 67.066

4 20.3 7.600 0.000

10 20.3 7.600 0.000

16 20.3 7.600 0.000

2 31.7 1.640 0.000

6 317 1.640 0.000

24 45.2 0.000 0.000

20 45.2 0.000 0.000

3 45.2 0.000 0.000

7 45.6 0.000 0.000

13 45.6 0.000 0.000

25 47.3 0.000 0.000

14 47.6 0.000 0.000

8 47.6 0.000 0.000

18 52.6 0.000 0.000

22 52.6 0.000 0.000

9 64.6 0.000 0.000

15 64.6 0.000 0.000
Average project completion-time: 71.64 hours

Experiments
One run with one sub-run was done using the average
activity execution times from Figure 5 as fixed
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execution times. Table 1 shows the activities ranked to
their slack. The first 6 activities are critical.

Figure 7 shows the completion-time distribution as a
result of one run of 5000 sub-runs in which activity
execution times are drawn from the individual activity
distribution functions. The average completion-time
amounts to 71.64 hours, which appears to be
substantially more than the completion-time determined
with average execution times. To emphasis the effect of
activity-duration distribution, a "worse case" run was
performed using exponential distributed activity
execution times with the same averages as those given
in Figure 5.

Entries 5000 90% Percentile 84.15
Average 71.64 95% Percentile 86.40
Stand.Dev. 9.59  Maximum 90.67

800
600
400 W
200

o LA L]

frequency

40 48 56 64 72 80 88 96

project completion times (h)

Figure 7. Completion-time distribution as a result of
one run of 5000 sub-runs in with activity execution
times drawn from the individual activity distribution
functions defined by Figure 6 using the parameters of
Figure 5.

Entries 5000 90% Percentile 154.125
Average 97.50 95% Percentile 180.59

Stand.Dev. 43.49 Maximum 376.56
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Figure 8. Completion-time distribution as a result of
one run of 5000 sub-runs in which activity execution
times are drawn from the individual activity distribution
functions. Here negative exponential distribution
functions were applied with average indicated in

Figure 5.

The results are shown in Figure 8, and give an average
project completion-time of 97.5 hours and a 90%
completion-time percentile of 154 hours. It can be

concluded that the completion-time distribution and its
average strongly depend on the execution time
distributions of the activities. If (some) activity
execution time distributions are unknown in practice,
experiments with several distribution types provide
insight in the influence on completion-time. All further
runs in this paper refer to the general distribution type
of Figure 6. Table 2 represents the same run as Figure 7
and shows the results for all activities sorted on average
slack. In column 3 the percentage of the sub-runs in
which the activity was critical is indicated. The project
contract time was chosen as the 90% percentile of
Figure 8, this being 84.15 hours. The last column shows
the percentage in which the activity was critical if the
contract time was exceeded. We will call that “contract
critical”. Some activities, for example activity 23, are
not critical with fixed average execution times but
appear to be critical to some extent when using the
execution time distributions, and are highly critical if
the contact time is exceeded. These activities have to be
monitored carefully during the project. From the point
of view of a project manager it is very important to
know what decisions have to be made during the
project. It is necessary to appreciate how to use
additional information gained during progress of the
project. After activity 19: check starboard engine, there
may be a pretty accurate estimate of the duration of
activity 23, the repair time of the engine. How to use
this extra information! For example, the manager needs
to know wether to apply extra resources, speeding up
activity 23 in order to avoid project tardiness.
Consequently he needs to know at what execution time
level activity 23 will be contract critical. To answer this
question runs were performed for a number of pre-set
execution times of activity 23. The results are shown in
Figure 9.

100

80 W
60 <§§>
40 fl

20
0 0——-0——<>——03§?

51 52 53 54 55

%contract-critical

execution times of activity 23

Figure 9. Relation between activity 23 being contract
critical and its execution time. As a contract time the
90% percentile of the project completion-time
distribution was taken this being 84.15 hours. Each
measuring point represents a run with 1000 sub-runs.
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It can be concluded that if the execution time of activity
23 is kept under 52.7 hours, it will not become critical.
The critical activity-duration depends on the used
contract time according to Figure 10.
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Figure 10. Critical levels of duration of activity 23 as a
function of the project contract time. The contract time
values correspond with percentiles of 80%, 85%, 90%
and 95% (see also Figure 7).

Capacity

Another aspect for which simulation offers added value
is the assignment of finite capacity. Most networks only
reflect the technical limitations imposed on the activity-
sequence. So two activities that have no technical
dependencies may be executed in parallel in the
network. Limited capacity may prevent or delay parallel
execution. However, it is clear that at each moment the
need for capacity is determined by the duration of the
preceding activities and the actual need for capacity.
Simulation offers a natural way of dealing with limited
capacities by dynamically assigning capacity to
activities according priority rules.

if (exectime>ultimateValue) then
- begin

- if mechanic available then

- begin

- claim mechanic

- exectime:=exectime*2/3

- end

- end

- hold execTime

- eventually release mechanic

Figure 11. Pseudo-code capacity claiming rule
replacing "hold execTime" statement in Figure 2

To illustrate this the case under consideration will be
further elaborated. We will focus on the two engine
repair activities 21 and 23. The duration of these
activities is based on two mechanics working per
activity. We assume these two mechanics are available
for each engine. As shown in Figure 9, activity 23 may
have to be speeded up to remain under an ultimate value

(52.7 hours). To this end the rule is that an additional
mechanic is brought in if the repair time, as predicted in
the preceding inspection activity, exceeds the ultimate
value. It is necessary to determine how many additional
mechanics are needed and how the rule influences the
completion-times. First the ultimate value of activity 21
is determined in a way similar that used for activity 23.
The rule was implemented in the activity process as
indicated in Figure 11.

Two types of experiments were performed:

1: infinite capacity; in this case two extra mechanics are
available

2: restricted capacity: one extra mechanic is available

The results are shown in Table 3 and Figure 12.

Table 3. Experiments with capacity rule. Each run
consists of 5000 sub-runs. The contract time applied was
84.15, this being the 90% percentile of the completion-
time distribution without the rule given in Figure 7.
infinite extra | finite extra No extra
capacity capacity capacity
% exceeding 0 1 10
contract time
%interventions 29 27 0
average project 67.55 67.88 71.64
completion-time
std. Deviation 6.86 7.23 9.59
max completion- | 83.92 89.56 90.67
time
Entries 5000 90% Percentile 77.88
Average 67.88 95% Percentile 80.25
Stand.Dev. 7.23 Maximum 89.56
1200
3 | H
c 800
(O]
=
8 400 ]
0 r T T T T T TI\_'\— T
52 64 76 88 100
project completion times (h)

Figure 12. Completion-time distribution as a result of
one run of 5000 sub-runs with one extra mechanic who
is assigned to activity 21 or 23 according the rule
explained in Figure 11.

The experiments indicated that the risk of contract time
excess can be reduced from 10% to 1% with one extra
mechanic scheduled according the rule. Of course
evaluation of cost should determine wether such a
measure is indeed profitable.
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CONCLUSIONS

Process-oriented simulation offers a natural way for
project planning, especially with respect to uncertainty
about the duration of activities and all kinds of specific
constraints in and between activities. If activity-
duration distributions are known, simulation provides
realistic statistics on project duration and information
about the chance of individual activities being critical.
A case relating aircraft maintenance shows a very large
influence of activity-duration distribution functions on
average project completion-time and its distribution. If
the distribution functions of one ore more activity
durations are unknown, experiments with several
distribution types supplies insight in completion-time
distributions. From the completion-time distribution
function a project contract time with known probability
can be derived. When this contract time is aggreed,
further experiments indicate contract critical activities.
Analysing the influence of these activities provides
criteria for when and how to intervene during the
progress of the project in order to force the completion
of the project within the contract time. Further research
will focus on the allocation of capacity and resource
allocation.
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